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Consider the flow of an incompressible fluid between two infinite concentric circular 
cylinders. The outer cylinder is a t  rest whilst the angular velocity of the inner 
cylinder has a steady part and also a harmonically oscillating component. We 
examine the situation where, for a suitable choice of parameters, two types of vortex 
instability can occur simultaneously ; first a short-wavelength mode which is 
essentially trapped in a thin ‘Stokes’ layer near the inner cylinder and, secondly, a 
long-wavelength mode which fills the whole region between the cylinders. We 
investigate the problem in which two short-wavelength vortices and one long- 
wavelength vortex coexist and are such that each pair interacts to drive the third. 
Additionally, the short-wavelength disturbances are nonlinear in their own right. 
Coupled amplitude equations for the three modes are derived and their solution 
discussed. 

This form of interaction may also take place in a boundary layer. Such a situation 
is more complex than that under consideration here as it would be necessary to take 
into account the growth of the boundary layer. However, this simplified problem 
gives an insight into the behaviour of the more difficult situation. 

1. Introduction 
The aim of this paper is to give a theoretical description of a particular interaction 
phenomenon which can occur between vortices in an incompressible viscous fluid 
contained between two infinitely long concentric circular cylinders. In  particular, we 
concentrate on the case of a modulated Taylor-vortex flow in which the outer 
cylinder is a t  rest whereas the inner one has an angular velocity which modulates 
about a non-zero mean. A review of Taylor-vortex flows in general has been given by 
Stuart (1986), but the modulated case has relevance in numerous practical situations 
and thus has merited special attention ; examples include circulatory flows in animals 
and many geophysical considerations. 

Some of the first experimental work on modulated flows between long concentric 
cylinders was performed by Donnelly (1964). He studied the flow in the geometry 
described above and found that the modulation of the steady part of the angular 
velocity of the inner cylinder by the oscillatory component markedly stabilized the 
flow. Hall (1975) gave an asymptotic analysis in an attempt to explain theoretically 
the results obtained by Donnelly and, to this end, used both linear and weakly 
nonlinear approaches. He took the angular velocity of the inner cylinder as 52( 1 + E 

cosot) and analysed two particular limits. Firstly, for small w and E ,  it was found, 
according to linear theory, that the critical Taylor number a t  which the basic flow 
becomes prone on instability is O(e2)  less than its value for the unmodulated case. 
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Additionally, in the large-frequency limit with e arbitrary, it was shown that 
modulation again has the effect of decreasing the critical Taylor number, but now 
alters its value by O ( E ~ W - ~ ) .  I n  his study, Hall defined the Taylor number by T = 
2Q2R,d3/v2, where R, is the radius of the inner cylinder, d is the gap between the 
cylinders and v is the kinematic viscosity of the fluid. In  the unmodulated case the 
critical value of T a t  which the onset of instability occurs is T, x 3390. The work 
concentrated on the ‘small gap limit’, in which the distance between the cylinders 
is assumed to be much less than the radius of curvature of either cylinder and the 
perturbations investigated were taken to  have axial wavelength comparable with the 
separation of the cylinders. 

The analysis of Hall (1975) showed, in the high-frequency limit and on the basis 
of linear theory, that the vortex flow is governed by a multilayered structure. The 
basic flow in this situation is time-dependent only in a region close to  the inner 
cylinder (essentially in a Stokes layer). Further from this boundary the basic flow 
attains an essentially steady form and the perturbation structure (which extends 
across the whole of the region between the cylinders) is correspondingly different 
from that in the Stokes layer. Finally, a third region, which takes the form of a 
Stokes layer adjacent to the outer cylinder, is required in order to ensure that the 
necessary boundary conditions are satisfied on that cylinder wall. I n  each of these 
zones, Hall expanded the disturbance velocity in a Fourier time series and then 
expanded the Fourier coefficients and the Taylor number T in powers of u-i, where 
u is defined as the (large) frequency parameter Wd2/v .  By equating like powers of u-i 
and solving the resulting systems of differential equations within each zone, Hall 
determined the disturbance velocity across the whole region between the two 
cylinders. Further, the coefficients in the Taylor number expansion were found by 
examination of the steady parts of the velocity field. 

Hall also investigated the problem for small finite-sized vortices in the high- 
frequency limit by utilizing a standard weakly nonlinear approach. The Taylor 
number was perturbed slightly from its linear neutral value and the amplitude of the 
vortex permitted to evolve on a suitably slow timescale. Hall (1975) demonstrated 
that the effect of nonlinearity is only important through its influence on the steady 
part of the perturbation velocity, and that, according to weakly nonlinear theory, 
small equilibrium vortices could persist. Additional details of all the aspects of the 
problem considered by Hall (1975) may be found in his thesis, Hall (1973). 

The theoretical results of Hall (1975) for the high-frequency linear modes suggest 
that modulation tends to destabilize the flow; in contrast to the experimental 
conclusion reached by Donnelly (1964). Kumar, Bhattacharjee & Banerjee (1986) 
attempted to repeat the high-frequency analysis of Hall, but derived conclusions 
very different from those of the latter investigation. In  particular, Kumar et al. 
suggested that modulation has a stabilizing influence and that it has a very small, 
O ( W - ~ ) ,  effect on the critical Taylor number. However, these authors failed to take 
any account whatsoever of the delicate physical structure governing the flow. More 
recently, experiments by Walsh, Wagner & Donnelly (1987) have lent support to the 
view that modulation does indeed destabilize the flow, reinforcing the conclusions 
reached by Hall. 

In this paper, we shall consider interactions between a high-frequency vortex of 
the type described by Hall (1975, hereinafter referred to  as H)  and a pair of vortices 
of much shorter, but different, wavelengths, the structure of which was first 
considered by Seminara & Hall (1976, hereinafter SH). In SH the linear stability of 
a Stokes layer on a harmonically oscillating cylinder within an infinite, viscous, 
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incompressible fluid was examined. At a large frequency of oscillation w ,  the flow 
induced in the fluid by the motion of the cylinder is confined to a thin layer of 
thickness O((v /w) i )  adjacent to the cylinder. SH argued that since the flow is confined 
to this boundary layer, then a t  leading order the centripetal forces associated with 
the curvature of the streamlines have negligible effect on the basic flow, although this 
curvature ensures that the basic flow is susceptible to a vortex-type instability whose 
wavelength in the axial direction of the cylinder is also O((v/w)P).  In  the Stokes-type 
layer, the disturbance velocity was expanded as a Fourier series in time, as in H, 
and this resulted in an infinite-dimensional system of ordinary differential equations. 
The perturbations decay exponentially at the edge of the Stokes layer and were 
evaluated using two distinct methods. Firstly, SH demonstrated that the solution of 
these governing differential equations could be obtained using an analytical 
approach. By seeking a solution of Hill type it was shown that the perturbation 
velocities could be determined in the form of infinite sums. The summands are found 
by solving an infinite, homogeneous system of linear algebraic equations which 
necessitates the location of zeros of an infinite determinant. 

It was discovered that in practice this analytic solution was difficult to obtain. 
Consequently, SH also examined a numerical solution of the differential system. The 
details of this approach are very similar to those of the method we use later in this 
paper and so we postpone a discussion of these numerical aspects until then. For the 
present, we remark that the numerical solution described by SH indicates that the 
flow between the concentric cylinders in H is liable to an instability of these small- 
wavelength vortices confined to the vicinity of the inner cylinder when the Taylor 
number T exceeds the value 164~-~a:. Here (in H), we recall that the angular velocity 
of the inner cylinder is Q(1 + E  coswt) and u is defined as the frequency parameter 
w d 2 / v ,  where d is the gap between the cylinders. Noting the critical Taylor number 
of 3390 derived in H, a t  which the flow becomes unstable to long-wavelength vortices 
which completely fill the space between the cylinders, we see that when E z 0.22ai the 
breakdown of the flow via either vortex type becomes equally likely, as mentioned 
by SH. At this crucial size for E we can show that for a Taylor number very slightly 
above critical there are two short-wavelength vortices which can interact through 
the nonlinear terms in the Navier-Stokes equations and drive a longer wavelength 
mode. In turn, this long-wavelength perturbation can combine with each of the 
short-wavelength vortices to drive the other. It is this interaction mechanism which 
is the subject of our study here and, for ease of reference, we shall refer to the long- 
wavelength vortices described in H and the high-wavenumber modes of SH as being 
long-wave and short-wave perturbations respectively. 

SH also conducted some simple experiments to confirm their theoretical 
predictions as to the critical Taylor number and the nature of the breakdown of the 
flow to short-wave vortices. In  a subsequent paper, Seminara & Hall (1977), they 
extended their theory to a weakly nonlinear regime. Here, they used the method of 
multiple scales to monitor the nonlinear evolution of a monochromatic disturbance 
to the basic flow when the Taylor number T was slightly above or slightly below the 
linear critical value T,. By using an approach similar to that employed by Stewartson 
& Stuart (1971), the authors sought disturbances of amplitude O(IT-T,I$) when 
IT- T,I 6 1.  Seminara & Hall (1977) showed that according to this weakly nonlinear 
theory the nonlinear effects permit the existence of a non-zero, stable disturbance 
when linear theory would suggest instability and exponential growth of the 
perturbation. Duck (1979) considered the effect on this instability mode when the 
cylinder wall was made slightly wavy. In particular, he examined flows a t  Taylor 
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numbers close to critical and a variety of wavelengths of the distortion in the 
cylinder, all of which had the property that the forcing caused by the wall 
perturbation interacted with modes of certain critical wavelengths so as to produce 
resonance. Hall (1981) further investigated the secondary breakdown of the weakly 
nonlinear finite-amplitude disturbances of Seminara & Hall (1977) to a mode with 
wavelength twice that of the fundamental vortex. The theoretical onset, of this 
secondary breakdown was in good agreement with the results of experimental work 
by Park & Donnelly (1981). 

In  the interaction process between the long-wave and two short-wave vortices 
considered in our present work we allow the vortices to evolve on a suitably slow 
timescale which enables us to derive a coupled triple of amplitude equations for the 
modes. We find that it is possible to obtain an asymptotic description of the physical 
processes involved when the short-wave vortices are nonlinear in their own right (in 
the sense of Seminara & Hall 1977). The resulting triad of equations are somewhat 
modified versions of the classical types which govern numerous interactions in 
hydrodynamics. Many examples of the types of interacting triad equations and their 
corrresponding solutions which do occur in fluid mechanics may be found in Craik 
(1985) and the references therein. 

The procedure for the remainder of the paper is as follows. In  $2 we formulate the 
problem and determine the sizes of the modes which enable the desired interaction 
mechanisms to occur. We develop the perturbation expansions and obtain the 
coupled evolution equations in $3  and, in $4, describe the numerical work necessary 
for the evaluation of the coeficients in these equations. Finally, in $5 we obtain some 
solutions of the triad equations, study the stability of the equilibrium solutions and 
conclude with some discussion and suggestions for further work. 

2. Formulation of the interaction problem 
We consider the stability of a viscous incompressible fluid contained between two 

infinitely long concentric circular cylinders of radii R, and R, (> R,). The gap d 
between the cylinders is taken to be small compared with R, and so in the ensuing 
analysis terms of O(d/R,)  are neglected. The fluid is supposed to have density p and 
kinematic viscosity v, and cylindrical polar coordinates ( r ,  8,Z) are taken with the Z- 
axis aligned along the axis of the cylinders. Let the corresponding velocity vector be 
(u*, v*, w*) and t* be the time, where an asterisk denotes a dimensional quantity. 

Following the discussion contained in the introduction we suppose that the inner 
cylinder rotates about its axis with angular velocity 

AwlR,  (t + cos WL'), 

where w is the frequency of the oscillatory part of the angular velocity and A and 8 
are constants. However, we have already seen that when E = O($), where u = wd2/v 
is the (assumed asymptotically large) frequency parameter, then the flow is 
susceptible to both types of instability mode described in $ 1 .  

The Stokes-type short-wavelength modes considered in SH are confined to a thin 
layer of thickness O((v /w) i )  adjacent to the inner cylinder. Since the work of SH 
shows that as we move away from this thin layer these short-wave modes decay 
exponentially, it may be anticipated that all the interactions between the different 
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vortices take place inside the Stokes layer. Following SH we define dimensionless 
variables for this layer by 

and then the basic flow is given by (0, Awfio, 0), where 

and throughout the paper C.C. denotes complex conjugate. We suppose that this bqsic 
flow is perturbed so that the total flow has velocity components 

(u( 2vw)), Aw (v + go) ,  (2vw)i). 

Substituting these velocity expansions into the momentum and continuity equations 
and eliminating the pressure terms yields the governing sets of equations 

au aw -+- = 0, 
a7 a2 

where M = (i32/Cl~2) + (a2/&'), the Taylor number 

T, = 2A2(2w)i/(R, d) ,  
and the nonlinear terms Ql, Q2 and Q3 are defined by 

Q,  = 2 ( u ~ + w $ ) - 1 T , v 2 ,  Q2 = 2(u$+w$) , ]  

Q3 = 2 ( ~ e + w ; ) .  

(2.3a) 

(2.36) 

( 2 . 3 ~ )  

(2 .3d)  

(2.3e) 

We note that the definition of T, corresponds to that given in Seminara & Hall 
(1977) but is 4 2  times larger than the definition in SH. With these scalings, using 
the results of the introduction, the basic flow (2.21 is equally prone to the onset of the 
two types of instability mode when E: = e0 ua, where eo z (164/3390): x 0.220. 
Finally, the no-slip conditions on the wall of the inner cylinder require that 

u = v = w = O  on q = O .  ( 2 . 3 f )  

The short-wave modes have an O( 1 )  wavelength based upon the non-dimension- 
alization (2 .1)  and we demonstrate that we can formulate the interaction problem 
involving a long-wave vortex in which the Stokes modes investigated in SH are 
nonlinear in their own right. Using the results of H, the long-wavelength mode has 
wavenumber O(u-4) relative to the z-coordinate defined in (2.1) and its structure 
extends throughout the gap between the cylinders. If this vortex has z-dependence 
described by E = exp (ikz/&), where k = O(l ) ,  and if 6 is the (assumed small) 
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'Inner layer 

FIQURE 1. The flow structure for the long-wavelength (long-wave) mode. p e ,  9 = O(1)  in the 
inner layer (the region to which short-wave vyrticee are confined), k = 9(2/a)Z = O(1) in the central 
region described by 0 < 6 < 1, and 7f = (a/2)3-7 = O(1) in the Stokes layer adjacent to the outer 
cylinder. 

amplitude of this disturbance mode, then in the 'inner layer' where 7 = O(i) ,  see 
figure 1, the leading-order perturbation velocities corresponding to this mode take 
the forms 

S ( i ,  &, a&) E ,  (2.4) 

where 2, v" and Zi, are O(1) functions of 7 and t .  A feature of this mode is that the 
steady components of the disturbance velocities are asymptotically larger than their 
time-dependent parts. The disturbance does not decay as 7 + co and, indeed, H 
shows that it is largest in the central region of the flow where 6 = 7(2/a)i = O(1). In 
this zone, the basic flow solution (2.2) is steady and the disturbance quantities are 
governed by the solutions of a sixth-order system of ordinary differential equations 
with suitable boundary conditions a t  the edges of the channel, = 0 , i .  The flow 
structure for this vortex is completed by a thin layer adjacent to the outer cylinder. 
Details concerning this region may be found in H but to the orders we require in the 
current study careful analysis of this outer Stokes layer is rendered unnecessary. 

Following SH we suppose that the critical Taylor number a t  which the flow is 
unstable to short-wave vortices is T,, ( = 232.52) with the corresponding wavenumber 
for the vortex m, (=  0.85852). Then we consider the interaction of the two Stokes 
modes with axial dependences of the forms 

El,  = exp (i(m, +_ a, 0-i + a2 C T - ~  + . . .) x ) ,  (2.5a) 

where a2,a3, ... are constants which need not be explicitly found. These two modes 
interact through the nonlinear terms Qi in (2.3) to drive vortices with z-dependence 
of the form 

E, = exp (2ia, d z ) ,  (2.5b) 

i.e. a long-wave mode. However, we have chosen T,, and the size of the oscillatory 
part of the angular velocity of the inner cylinder so that the basic flow (2.2) is equally 
prone to instability through both long-wave and short-wave vortices and so we 
choose a, such that the mode with spatial dependence (2 .5b )  is neutrally stable at  
T = T,, and 8 = .so d. Using the results of H this requires a, z 2.2107. 

Guided by the work of Seminara & Hall (1977) we can show that when the 
amplitude of the Stokes modes is O ( C - ~ ) ,  where m is some positive constant, these 
vortices are weakly nonlinear when allowed to evolve on a timescale of size O ( C ~ ~ ) .  
We then choose m and the amplitude of the long-wave vortex such that each pair of 
modes interact to drive the third. The Stokes modes combine in the inner layer where 
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7 = 0 ( 1 )  and the effect of this interaction on the long-wavelength mode manifests 
itself by altering the boundary conditions a t  6 = 0 for the differential system 
governing the latter vortex in the central region. Additionally, this vortex interacts 
witb the Stokes modes also inside the inner zone and by making a careful and 
thorough study of the governing equations (2.3) together with the forms of (2.4) and 
(2.5), it is found that the desired interaction coupling occurs when m = 1 and 8 = 
O(ad). Then the modes evolve on a slow O(CT-~) timescale and the amplitudes of the 
Stokes modes in the inner region are O(u-l). With this choice of parameters it is 
formally straightforward to verify that the long-wavelength mode remains 
essentially linear in character and all self-interactions involving this mode lead to 
terms which are negligible to our order of working. 

To enable us to develop evolution equations for the three modes we further 
consider a Taylor number T,  slightly perturbed from its critical value so that 

T,  = T,+a-1Tl+a-tT,+(T-2T,+..., ( 2 . 6 ~ )  

where T, = qc, and T, are particular constants which will not need to be evaluated 
and T, remains unspecified for the moment. Further, we expand the steady part of 
the angular velocity of the inner cylinder as 

1 
- = d ( e l  +I--&, + a-lEa + . . *), (2 .6b )  
6 

where el = 1/e0 E 4.541. The expressions (2.6) enable us to ensure that the modes 
remain neutrally stable a t  leading orders. Physically, the value of E may be perturbed 
from its critical value by varying the size of the mean part of the angular velocity 
of the inner cylinder, with an increase in the velocity component corresponding to a 
reduction in E .  Additionally, inspection of (2.3d) reveals that the Taylor number T, 
can be altered within an experimental context by changing the amplitude of the 
oscillation of the inner cylinder, by adjusting the frequency of the oscillatory part of 
its angular velocity, or, perhaps most easily, by changing the fluid contained within 
the gap between the cylinders. The perturbation velocities corresponding to the 
expansions (2.6) are formally considered in the following section and there we show 
how the interaction equations for the three modes may be derived. 

3. Derivation of the evolution equations 
To investigate the proposed interaction of the modes with z-dependencies given by 

(2.5) we follow the work contained in H, SH, Seminara & Hall (1977) and the 
discussion in the previous section. These accounts suggest that in the inner Stokes 
layer, where 17 = O ( l ) ,  the appropriate perturbation velocities assume the form 

u = Cr-1[A(u1,v1, w1)E1+B(u,,v2, w,)E,+c.c.] 
+ a-qqu,, ah,, &w3) E,  + C.C.] + a-2(IA12 + lB12) (u,, v,, w,) 

+ ~-2[A2(u21, v21, wz1) 3; +B2(U,,, v 2 2 ,  w22) E; + uB(u12,2’12, w121 El E, + c.c.1 

+..., (3.1) 

and that the modes evolve on an 0(cr2) timescale, 7 = CT-~~. In  (3.1) we thus let the 
(possibly complex) amplitudes A ,  B and C of the three modes be functions of 7 and 
the disturbance quantities ul, vl, wl, ..., u,, v,, ..., uzl,  ... are O(1) functions of u, 7 
and t .  The detailed expansions of the individual modes arise from the work of H and 
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SH, the corresponding amplitudes from considerations described in the preceding 
section and the forms of the mean flow and higher harmonic disturbances come from 
Seminara & Hall (1977). We use the technique of multiple scales to replace the time 
derivatives in (2.3) according to the rule 

and, following SH, we expand the perturbation velocities as Fourier series in time 
which assume the form 

m 

(uk, ' k ,  w k )  = (%r(ljl, u), 2 ) k r ( q ,  W k r ( q >  u)) eirt, ( 3 . 3 ~ )  

where k can take any of the subscript values 1,2 ,3 ,  m, 21,22 or 12 contained in (3.1). 
Then we express ukr, 2)kr, wkr as descending series in the asymptotically large 
parameter u so that 

r--m 

m 

(Ukr ,  'err W k r )  = ('krO(7)? 'kro(q), W k r O ( q ) )  + c g-i( l+')(ukrj(q) ,  ' k r j ( q ) ,  w k r j ( q ) ) ,  (3 .3b)  
j-1 

and we can proceed to insert (2.5), (2.6), (3.1), (3 .2 )  and (3 .3)  into the basic governing 
equations (2.3). Recalling the definitions of E l ,  E ,  and E ,  in (2.5) we note that El = 
E, E,, E ,  = El E i l ,  E,  = El E i l  and these relations provide the mechanisms for the 
interactions between each pair of modes which drive the third. Much of the work 
described below can be derived from H and SH and, where possible, we merely state 
the governing equations for the perturbation quantities and appeal to H and SH for 
the corresponding solutions. The development of the amplitude equation for the 
second Stokes mode follows very closely that for the first such mode and so we 
concentrate on deriving the evolution equation for the latter vortex and indicate how 
it needs to be modified in order to obtain the analogous equation for the second 
mode. 

Equating terms of leading order in u with z-dependence proportional to El leads 
to the coupled equations 

} (3.4) 
vl(T-l)o + e-v(l-i) "l(r+l)ol  = 0, 

l(r+1)0 = 0, 

(L-2ir)Lul(r)o-u IT o m2 c [e-7(1+i) 

(L - 2ir) wl(r) + (1  + i) e-v(l+i)ul(r-l)o + (1 - i) e-?(l-i)u 

where r = 0, f l ,  +2, ..., L = (d2/dq2)-mZ, and 
are that 

This infinite system separates into two decoupled systems and, following SH, we take 
ul(zr+l)o - v ~ ( ~ ~ ) ~  is as stated and 
solved in Seminara & Hall (1977), i.e. 

- 0. The remaining system for ( u ~ ( , ~ ) ~ ,  

} (3.5) 
(L-4ir) m:[e-@+') ~ 1 ~ ( ~ ~ - ~ ) ~  + e-v(l-i) ~ 1 ( 2 r + l ) o I  = 0, 

(L - 4ir - 2i) v , ( ~ , + ~ )  + ( 1 + i) e-7(1+i)ul(zr) + (1 - i) e-v(l-i) u l ( z r + z ) o  = 0, 
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r = 0, f l ,  + 2  ,..., and 

This system describes the behaviour of the fundamental components of the first 
Stokes mode and we find that the same coupled equations govern the equivalent 
terms for the other Stokes mode so that u2(r)o(7) = ~,( , . ,~(7)  and ~ , ( , ) ~ ( 7 )  = ~ l , ( ~ ) ~ ( 7 )  for 
all r .  

At first order we find that wl(zr)l(7) = ul(2r+l)l(q) = 0 and that the remaining 
functions "1(2r+1)1(7) and ~ 1 ( 2 r )  1 ( ~ )  satisfy 

(L-4ir) Lu,(,,,, -!jq m~[e-"(1+i)w1(2r-1)1 + e-q(l-i) % 2 T + l )  11 

( 3 . 6 ~ )  + e-q(l-i) = Tom c 1  a [e-v('+')v l(2r-1)O 

(L - 4ir - 2i) wl(zr+l)l + (1 + i) e-4(1+i)~1(2r) + (1 - i) e-q(1-i)u1(2r+2) = 2mc a, a,(,,+,) *, 
(3.6b) 

w1(2r+1)1=0 at q = O  andas q+co. dUl(2,)l - =-- 
d7 

with U1(2r) 1 

It is also found that U~( , )~ (T / )  = - U ~ ( , ) ~ ( Y ) ,  w2(r,l(q) = -wl(r)l(q) for all r .  We show that 
we need the solutions of (3.6) and those of the next order system to enable us to 
describe the interaction of the two Stokes-layer modes which drives the long- 
wavelength vortex. This next order system is 

~ 1 ( 2 r + 1 ) 2 ( 7 )  = ~1(2r)2(7) = 0, ( 3 . 7 ~ )  

(3.7b) 
(L - 4ir - 2i) Lu,(,,+,, - !jq mt[e-q(1+i)wl(2T) + e-q(l-i) ~ 1 ( 2 r + z ) r l  = T 0 E 1 v 1(2r+1)0, 

%2r+1)2 = 0, (3 .74  (L- 4ir) w1(2r) + (1 + i) e-q(1+i)ul(2r-l) + ( 1  - i) e-q(l-i) 

du1(2r+-1)2 = wl(2r) = 0 at 7 = 0 and as 7 + 00. - 
d7 

with U1(2r+1)2 - 

Finally, ~ 2 ( r )  2(7)  = 
We now turn to consider the leading-order disturbance quantities for the long- 

wavelength mode. Substitution of the relevant terms of (3.1) in (2 .3 )  yields that, as 
in H, we have 

2 ( ~ ) ,  "2(r) 2 ( ~ )  = vl(,) 2(7) for all r .  

( 3 . 8 ~ )  

Subject to the necessary boundary conditions u300 = du,,,/dy = wao0 = 0 at 7 = 0, 
and setting one constant (obtained on integrating ( 3 . 8 ~ ) )  equal to zero (which merely 
reduces the subsequent algebra, see H, rather than changing the final results), these 
equations have solutions 

u300 = '1 T2> w300 = @2 7,  (3.8b) 

and in turn, from (2 .3c) ,  

( 3 . 8 ~ )  
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Here $l and p2 are constants which may be determined by matching with the 
perturbation quantities in the central region, see $3.1. 

As previously mentioned the time-dependent parts of this long-wavelength mode 
are much smaller than the steady components in the inner layer. I n  practice we have 
u310 = v310 = w310 = 0 and higher harmonic terms are yet smaller. In  H, Hall has 
given details concerning these non-steady terms. It may be verified that all such 
terms are too small to have any effect on the leading-order interaction equations 
under consideration here and hence further analysis of these terms is not needed. 

The first-order steady perturbation velocities for the long-wavelength mode in the 
inner zone are found to  be dependent upon the low-order Stokes mode disturbances 
satisfying the differential systems (3.5)-(3.7). The two-short wavelength vortices 
interact through the nonlinear terms Qj in the governing equations (2.3) to drive the 
long-wavelength vortex and we find that the steady perturbation terms u ~ ~ ,  and v301 
in (3.3b) are given by 

where 

- 
du301 - -_ ( 3 . 9 4  

(3.9b) 

(3.94 

Here a bar on a quantity denotes the complex conjugate of that  quantity, and the 
components contained in the definitions (3.9b, c )  are given by the systems (3.5)-(3.7). 
The terms I,,,, J301 become exponentially small as 7 --f 03 so that integrating ( 3 . 9 ~ )  
yields the solutions 

(3 .10~)  

(3 .  lob)  
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where p3, p4 and p6 are constants and the no-slip conditions u301 = du,,,/dq = vaO1 = 
0 on 7 = 0 have been applied. Clearly, as we pass to the limit 7 --f co and into the 
central region in which and JaOl will 
play roles in determining the matching conditions between the two zones. We shall 
address this problem in $3.1 but first we complete the analysis required to obtain the 
evolution equations for the Stokes modes. 

I n  (3.5) we presented the governing system for the leading-order Stokes mode 
quantities ul(r)o and w ~ ( , . ) ~ .  Since we have chosen to study the problem in which the 
two short-wavelength modes are themselves nonlinear, we need to obtain the 
governing equations for the first harmonic terms ( u , ~ ( ~ ) ~ ,  wzl(r)o) and the mean flow 
distortion terms ( u , ( ~ ) ~ ,  w , ( ~ ) ~ )  in expansions (3.3). Since the two Stokes modes have 
the same leading-order wavenumber m,, it follows that the functions corresponding 
to the zeroth-order first harmonic terms of the second mode are the same as those for 
the first mode. Additionally, the same is true for the functions a t  leading order in the 
'mixed-mode' term El E,  in (3.1) so that 

= 7(2/a)i = 0(1), the interaction terms 

uzl (r )O(T)  = um(i-)0(7) = u12(r)o(T)> v z l ( r ) o ( T )  = v22(7)0(7) = vlz(r)o(V), r = 0, * 1, * * a  * 

(3.11) 

Following the approach of Seminara & Hall (1977) we find that the functions 
(uzl(r)O, v z l ( r ) o )  satisfy the systems 

(L, -4ir) L, uzl(zr)o - 2m: G[e-~(1+i)v21(2r-l) + e-T(l-i) v21(2r+1)01 

m m 
dul(Zk)O d2ul(Zr-Zk)0 

d7 dT2 
= 4m% % x vl(Zk-l)O wl(Zr-Zk+l)o + x ul(Zr-Zk)O - 

k--m k--m 

( 3 . 1 2 ~ )  

d2 
L, = d?lp-4m: and ~21( , ,+1)0  = v21(2e)0 = 0, 8 = 0, f 1, f 2 ,  ... . 

Further, the zeroth-order mean-flow distortion terms are given by 

u,(r)o = vm(zr)o 0, r = 0, f 1,  f2, ..., 
and 

with v,(Zr-l)O = 0 on 7 = 0 and as 7 --f CQ. 

On substituting expansions (3.3) into (2.3) and equating coefficients of El a t  
descending powers of cr, it  is found that terms arising from the interaction of the long- 
wavelength mode and the second Stokes mode appear a t  seventh order ; i.e. in the 
equations determining and vl(r), of (3.3b). Up to this point the successive 
systems of governing differential equations for vl(r)j; j = 3,4,5,6) with 
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appropriate boundary conditions a t  = 0 and as 9 --f 00 are eigenvalue problems for 
the constants a2, a3, ... in ( 2 . 5 ~ )  and for the constants in the expansion of 
the Taylor number in ( 2 . 6 ~ ) .  Fortunately, the values of these parameters are not 
explicitly required in order to compute the evolution equations and so we consider 
immediately the system which determines the seventh-order coefficients for the first 
Stokes mode in (3.3b). After simplification, the governing equations may be written 
as 

(3.14 a) 

N ,  J .  Horseman and A. P. Bassom 

and 

u1(2r+1)7 - - wv,(2r)7 = 0, r = 0, k 1, +_2, -.-) 

v1(zr+l)  71  
1T m2 Y(l+i) (L - 4ir) L u ~ ( ~ ~ ,  , - 5 

dA 
,[ - ~ ~ ( ~ ~ - 1 )  7 + e-q(l-i) 

= (82 r )z+mt (T3- ! t3 )  (P2r)A + ( m E  % &2r+R2,)A(IA12 + lB12)  + ( N z r ) B C ,  (3.14b) 

(L-4ir-2i) +i)e-"1+i)u,(2,),+(i - i)e-~( '-~) U1(2r+2) 7 

dA - - 2u1(2r+1)0 + (zzr+1) A(IA12 + IP12) + (&,+1) BC, (3.144 

with boundary conditions 

211(2r+1)7 = 0 at 7 = 0 andas y+m, (3.14d) 

and where the coefficients Pzr, QZr, R2r, S2r,N2r, Z2rfl, yZr+l are functions of 17 defined by 

Pzr = $(wl(zr-l,o e-v(l+') + w 1(2r+1) 0 e-q(l-i) ), ( 3 . 1 5 ~ )  

-- du1(2r)7 = 

d9 
%(2r)7 - 

00 

&Zr = (wm(2k+1)0w1(2r-2k-l)0 +wlZ(2k+l)O~ul~Zk-2r+l)O~~ (3.15 b) 
k - - a  

( 3 . 1 5 d )  
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and 

In  (3.14) the constant ?, is that value of T3 for which a linear vortex with z- 
dependence given by El would be neutrally stable if the second Stokes mode and the 
long-wavelength mode were absent. However, the actual value of ?, need not be 
evaluated here. 

Since the differential operator forms in the system (3.14), (3.15) are identical to  
those in (3.5), the above equations for u,(,,),, vl(2r+l)7 only have a solution if a certain 
compatibility requirement is met, and this yields directly the desired evolution 
equations for the first Stokes mode. This condition is derived by considering the 
system adjoint to (3.5) which is given by the functions (Ftr(v), Glr+l(v), r = 0, 1, 
.,.>, where 

(L + 4ir) LF& + (1 - i) e-v(l-i)G;r+l + (1 + i) e-"l+')Glr-, = 0, ( 3 . 1 6 ~ )  

(3.166) 
2T 
2 

mc 0 [e-T(l+i)F+ + e-v(l-i)F+ ] = 0 (L + 4ir+ 2i) G&+, -- 2r 2r+2 

with boundary conditions 

(3 .16~)  

We multiply (3.14b) by the function Fir, (3 .14~)  by G;,+,, sum the resulting 
equations over all integers r and finally integrate by parts twice. On applying 
boundary conditions (3.14d) and (3.16~) we obtain the evolution equation 

where the constants a",, a", and a", are given by 

and 

( 3 . 1 8 ~ )  

(3.18b) 

(3 .18~)  
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We can repeat all the work described above to determine the amplitude equation 
for the second Stokes mode (with z-dependence E, and amplitude B(T)).  This 
procedure is almost identical to that given previously and we find that 

(3.19) 
dB 
- = Zl( dr 

- f i )  B + &,B( IAI2 + lBI2) + a",AC, 

where the coefficients in this equation are as given in (3.18). 
To complete the triad of evolution equations we need to consider the perturbation 

quantities for the long-wavelength mode inside the central region. It is easily shown 
by examining the systems of equations for the Stokes modes in the region T,I = O(1) 
that these short-wavelength vortices decay exponentially as T,I +. co. Consequently, in 
the region where 6 = 7(2/a); = 0(1) only the long-wavelength vortex is present and 
we now consider this zone. 

3.1. The central region 
In  this layer, where 6 = 7(2/a)i, 0 < 6 < 1 ,  (2.2) implies that the basic velocity profile 
tio is steady and in particular 

1 
a. = - (1-6) .  (3.20) 

€ 

Further, the governing equations (2.3) for perturbation 'velocities (&,8,&) become 

(3.21 a)  

(3.21 b)  

(3.21 c )  

where N = (2/a) (a2/i3E2) + (a2/&,) and the nonlinear terms Q1, Q2, 0, are given by 

and 
Q, = 2(z;G(--)+wz). av" 2 5 ,av" 

(3.21d) 

(3.21 e )  

We know that in this central zone only the long-wave vortex persists and it is 
essentially linear in character. Further, Hall has shown in H that the time-dependent 
parts of this disturbance are asymptotically smaller than the steady parts in the 
present case of u +- 1 and, as already mentioned, the unsteady components do not 
play any role in the determination of the evolution equations. Consequently, i t  is 
sufficient to concentrate on the steady part of the perturbation and using (3.1),  (3.3), 
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(3.8) and (3.9) the time-independent disturbance velocities in this central region 
develop according to  the form 

Usteady = g-'(d3(q, '$)? g-'$v",(a, 0, $,(a, E ) )  c(7) E3 + c.c*, ( 3 . 2 2 ~ )  

Substituting (3.22) into the governing equations (3.21) and comparing leading- 

( 3 . 2 3 ~ )  

order terms yields the eigenproblem 

NI 2i3,, - T, a! el( 1 - 6 )  B3,, = 0, 

where N, = (d2/dE2) - 2 4 .  Matching with the inner-layer solutions (3.8) as E-+ 0 gives 
the boundary conditions 

u300 A = - dd300 - - 6300 = 0 a t  6 = 0. (3 .23~)  
dE 

To obtain boundary conditions as t-+ 1 (i.e. as the outer cylinder is approached, 
see figure l),  it was shown in H that, strictly, we need to consider details of the 
'Stokes-like ' layer adjacent to the outer cylinder. However, again fortunately, it can 
be demonstrated by routine, although fairly lengthy analysis as in H, that to the 
orders of working we shall be dealing with here, the appropriate boundary conditions 
at 6 = 1 are given by 

(3.24) 

We recall that at  the outset T, and el were specifically chosen such that the 
'effective' Taylor number T,ei  for the system (3.23), (3.24) took its critical value. 
This ensures that this system forms an eigenproblem for the wavenumber a, and the 
corresponding disturbance eigenfunctions d,,, and B,,,. From H we have a, = 2.2107. 

The eigensystem encountered at  the next order in g serves to determine the 
coefficient e2 in the expansion of the steady part of the angular velocity of the inner 
cylinder 8s defined by (2.6b).  At this stage no effects of the interaction process 
appear, the calculation is routine and yields 6, = 0. Conversely, we find that the 
unknowns d302, 6,,, satisfy 

(3.25b) 

and that the interaction between the two Stokes modes enters the relevant boundary 
conditions. At 6 = 1 we have that (3.24) applies, but a t  5 = 0 we obtain from (3.3) 
and (3.10) that 

4302 = 0, - dd302 - - ~ ~ o m t 2 1 3 0 1 ( t )  dt and B,,, = JOm tJaol(t) dt. (3.26) 
d5 

is FLM 216 
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As was the case for the Stokes mode problem, we derive the evolution equation for 
this long-wavelength mode by considering the problem adjoint to (3.23). This adjoint 
system is the pair (fl(t),g:(E)) where 

N:f,++d2e1gi = 0, N l g i - ~ a : e l ( l - ~ ) f , +  = 0, (3.27) 

withf; = (df,+/dg) = gi = 0 at 6 = 0 , l .  In  the usual way, on multiplying ( 3 . 2 5 ~ )  by 
fO+, (3.256) by gi ,  adding the results and integrating by parts we obtain the amplitude 
equation 

where 

- = C , ( C ~ - Z ~ ) C + C ~ A B ,  
dC 
dr 

(3.28 a )  

where g3 is the value of c3 a t  which the long-wavelength mode is neutrally stable 
according to linear theory. As was the case for G, the value of this constant need not 
be found explicitly. Unlike the amplitude equations (3.17) and (3.19) this third 
equation (3.28a) does not contain a cubic term. Such a term, if i t  were to appear, 
would necessarily arise from self-interactions involving the fundamental component 
of the long-wavelength vortex. However, we know from the nonlinear analysis of H, 
that such a mechanism cannot occur until the amplitude of the long-wave vortex 
within the central region becomes O(a-l) .  So, according to (3.22a), the long-wave 
disturbance is not subject to this type of nonlinearity and hence we have the absence 
of the cubic terms in ( 3 . 2 8 ~ ) .  

I n  summary, we now have the three coupled amplitude equations for the 
interacting modes, given by (3.17), (3.19) and ( 3 . 2 8 ~ ) .  To enable analysis of this triad 
the numerical values of the coefficients contained in (3.18) and (3.286, c )  are required. 
The determination of these constants is the subject of $4. 

4. Numerical work 
I n  order to calculate the numerical coefficients in the coupled amplitude equations 

it was first necessary to perform some preliminary analysis of the eigensystem (3.5). 
This system was first approximated by a finite number of differential equations 
obtained by letting r = 0, IfI 1, +2, . . . fN, in (3.5) for some chosen N* and by setting 

replaced by suitable conditions a t  some selected large value of 7, say qm. As discussed 
in detail in SH, for large 7 a satisfactory approximation for the system (3.5) may be 
obtained by neglecting the centrifugal terms. This approximate system was solved 
using the condition of exponential decay as q+co and hence used to generate 
suitable asymptotic conditions for the full system at 7 = vm. These conditions were 
used to initiate an explicit fourth-order RungeKutta  scheme to determine the 

u ~ ( ~ ~ ) ~  - - vl~zr+l)o = 0 for JTJ > N*. The asymptotic boundary conditions as 7 --f co were 
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eigensolutions of (3.5) by marching with a preselected step length h from q = qm to 
7 = 0. The RungeKutta  method was combined with an iterative technique to 
ensure that for each wavenumber m, T, was determined such that the necessary 
boundary conditions at 7 = 0 were satisfied. The results obtained using this 
procedure were checked to ensure independence from the choices of qm, the 
integration step length h and the point a t  which system (3.5) was truncated, i.e. N*. 
The values of the coefficients in the amplitude equations (3.28) depend on the precise 
normalization chosen for the solutions of (3.5) and we made the choice such that the 
maximum value of u,(,), for 0 < q < 00 is unity. We found, in agreement with the 
results of SH, that the critical Taylor number was T, = T,, = 232.522 and that this 
occurs a t  corresponding disturbance wavenumber m = m, = 0.85852. Figures of the 
whole neutral stability curve in Taylor number/wavenumber space and of the 
eigensolutions of (3.5) in the critical case are to be found in Seminara (1976). 

The same procedure was employed to calculate the eigensolutions Fir(q)  and 
Gir+,(q) of the adjoint system ( 3 . 1 6 ~ ) .  Using these adjoint eigenfunctions together 
with the solutions of the fundamental system (3.5), the expressions PZr(q) and Szr(v) 
(defined in (3.15)) were determined, which, in turn, enabled the integrand of ( 3 . 1 8 ~ )  
to be calculated. The coefficient a", was then computed by evaluating the integral 
( 3 . 1 8 ~ )  by the trapezium rule, and the resulting value was checked for independence 
from the number of functions used to approximate the infinite sums present in the 
integrand. 

To establish the integrand of (3.18b) it would be necessary to first solve the system 
(3.12) for the first harmonic terms and (3.13) for the mean distortion functions. Then 
Qzr(q), R,,(q) and ZZr+,(q)  would be evaluated using definitions (3.15) and the 
integrand calculated. Upon numerical integration, the interaction coefficient C2 
would be obtained. Instead of carrying out this process ourselves we quote the result 
given by Duck (1979) who evaluated (3.18b) in the course of his investigation of 
nonlinear Stokes modes close to wavy cylinder walls. We note that the definitions 
(3.18a, b) are a t  variance with the equivalent ones given in Seminara & Hall (1977) 
owing to an error in that paper and also that the values of the coefficients a", and G2 
calculated by Duck differ from those quoted by Seminara & Hall. Our computations 
for a", revealed agreement with the work of Duck (1979). We additionally remark that 
the main conclusion of Seminara & Hall (1977) was that finite-amplitude, stable 
vortices could persist in the inner Stokes layer according to weakly nonlinear theory. 
This conclusion is only dependent upon the signs of the coefficients rather than their 
precise values, and even though the numerical values quoted by Seminara & Hall are 
incorrect, the conclusion concerning the existence of finite-amplitude vortices is 
unchanged. 

To determine the remaining coefficient in (3.17) and (3.19) we need to calculate 
d3,,(t) and G , , , ( ~ )  which define the long-wavelength mode structure in the central 
region. These terms satisfy the system (3.23) and, to fix a normalization, we chose 
Zi,,,,G,,, such that in addition to (3.23a-c) we had d;6,(0) = 1. When matching 
between the inner layer and the central zone we find that the coefficients j, and F, 
in (3.8b) are given by p, = and p2 = $goo(0). These values are used to evaluate NZr(q)  
and Kr+,(q) in (3.15) and hence the coefficient 6,. The eigenvalues of (3.23), together 
with the corresponding eigenfunctions, were found by Runge-Kutta and iterative 
techniques. As expected from H, we found that for the critical case E ,  = 4.5407 and 
a, = 2.2107 and further details of the method and sketches of Zi,,, and G3,, may be 
found in Hall (1973). Finally, given the functions d,,,, O,,,, the coefficient 6,, defined 
by (3.18c), was determined. 

18.2 
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In  order to calculate the coefficients c1 and c, of (3.28a), the adjoint functions 
(f,'(E), g:([)) satisfying (3.27) were computed using a technique identical to that 
employed for finding d,,, and 8,,,. Then the value of c1 followed naturally. 
Additionally, for c2, the terms Iiol( t )  and Jiol( t )  had to be derived. This necessitated 
the solution of the infinite systems (3.6) and (3.7) using methods very similar to those 
described for obtaining the eigensolutions of (3.5). Iiol( t )  and Jiol(t) followed from 
definitions (3.9) and the integrals in ( 3 . 2 8 ~ )  were again computed using the 
trapezium rule. 

All the numerical calculations were checked for consistency and our results for the 
coefficients in the coupled amplitude equations (3.17), (3.19) and ( 3 . 2 8 ~ )  are given 
below. We found that 

(4.1) 1 a", = 0.00233, a", = -0.0378, a", = -0.135, 
c1 = 5.765, c, = -0.3966 x lo5. 

5.  Results and discussion 
The analysis of the previous sections has led ua to conclude that the amplitudes of 

the two Stokes modes (A,B)  and that of the long-wavelength mode (C) evolve 
according to the coupled triple of equations 

dA 
d r  

( 5 . 1 ~ )  _-  - Zl(T, - % ) A  + a",(IA12 + lB12) A +a", BC, 

(5 . lb)  
dB 

= el( T,  - %) B + a",( [ A  1' + lB12) B + a", AC, 

(5.1 c )  _ -  - C*(E3-t3)C+C2AB, dC 
d r  

where the constant (real) coefficients are given by (4.1). 
A natural place to commence our analysis of (5.1) is to seek equilibrium solutions. 

It can be shown that there are four non-trivial steady solutions of (5.1) and if we 
write A = a ei@, B = beie, C = y ei(+-'), where a, /3 and y are real, then the equilibrium 
solutions are given by 

(i) a = 0, y = 0, p = f f , (T , -Q,  (5 .2a)  

(ii) p = 0, y = 0, a = kfl(T,-G), (5.2b) 

(iii) a = P =  kf2(%-%>e3-63)j y = ff3(%-$33,E3-;3)9 ( 5 . 2 ~ )  

(iv) a = - p  = kf&T3-93?e3-6& y = Tf,(T,-9,,~,-8,), ( 5 . 2 d )  

where fl, f2 and f, are defined by 

(5 .2e)  

and 

-&d,x f 
fl(4 = (-J, 

fp(x, y, = (a"3c,-2a",c1 a"1c1xy y r 
-C,a",X 

a", c2 -26, c1 y . f 3 ( 5 , Y )  = (5.29) 
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c 

The solutions (i) and (ii) correspond to having only a single Stokes mode present 
in the flow. Thus (5.2a, b )  are just the finite-amplitude equilibrium vortices predicted 
by the weakly nonlinear theory of Seminara & Hall (1977), who reported that this 
theory is consistent with observations made in their experiments. The third and 
fourth solutions occur when all three modes of instability are present in the fluid. 
These finite-amplitude steady vortices can only exist in certain regions of (e3,T3) 
parameter space. In particular, when 

then (5.2f) implies that we must have (T3-$3) < 0 if 0 > @ > GC and (!I3-$,) > 0 
otherwise. In all cases, for a fixed dj, we find that a and /3 are proportional to the 
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square root of ~T3--5!,~ whereas y is a linear multiple of lT3-$,1. Sketches of the 
possible equilibrium amplitude configurations are given in figure 2. A simple linear 
stability analysis of these equilibrium solutions reveals that when (e3-g3) > 0 then 
the vortices are unstable whereas for (e3-B3) < 0 they are stable. This was also 
confirmed using a numerical integration of the triad of equations (5.1). Hence, we 
would expect that, experimentally, for apparatus tuned such that the long- 
wavelength vortex is linearly stable when isolated from the other modes, we may 
hope to be able to observe a stable configuration in which all three vortex modes are 
present. Whether this effect could possibly be observed in practice remains a matter 
of speculation for the present although to the best of the authors' knowledge there 
is no direct experimental evidence with which to compare our results. Also in an 
experimental setting, the role that end effects might play is significant. In  our 
theoretical analysis no account has been taken of the obvious physical requirement 
that in practice the cylinders would be of finite length, and the incorporation of this 
restriction provides scope for an extension of our work. 

In general the solution of (5.1) is a non-trivial matter but some specific cases may 
give insight into behaviour of the solutions. 

Let us consider the situation where small-amplitude disturbances develop over a 
slow timescale. We assume that the perturbation of the Taylor number and e are also 
small so that all these qizantities are scaled on the same parameter 8,6 -4 1. Hence, 

( A ,  B, C )  = 8(a, b, c ) ,  ! = 87, 

Substituting these into the system of equations (5.1) and then neglecting the cubic 
terms that are O(6) smaller than the others, we have 

da 
d.i 
_ -  - c~,(t, - i",) a + a", bc, 

- b,(t3 - i,) b + cz, ac-, db 
d+ 
_ -  

dc 
d.i 
_ -  - cl(e3 - 6,) c + c2 ab. 

( 5 . 3 ~ )  

(5.3b) 

(5.3c) 

Again, we look for equilibrium solutions of these reduced equations by writing a 
= ae'#, b = Beis, c = yei(#-@), where a, p and y are real. We find that the solutions are 
given by ( 5 . 2 ~ )  and ( 5 . 2 d )  with a", = 0 as would be expected. However, these 
solutions exist only in the regions of the parameter space where (t3-13) (e, -6 , )  > 0. 
Analysis of the stability of these equilibrium solutions shows that both (i) and (ii) are 
unstable for all values of the parameters (t ,  - l,) and (e, - e",), within the regime of 
existence, in contrast to the full equations (5.1). Hence, for this small-amplitude 
disturbance condition there is no stable configuration. 

If we make further transformations 
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we obtain 

- db,, = 8,(t, - t",) b, + F1 b,, 
d r  

(5.4b) 

db, = cl(e,-e",)b,+b,b,. (5.4c) 
d r  

Many forms of three-wave resonance are studied in detail in Craik (1985) and a 
particular solution is given for this system (5.4) when we have the additional 
constraint 

The solution is given by 

bl,z = i 1 / 2 a e x p  cos 0 (if@,, -6,(t3-13) i tan O)), 

(5.5) 

(5.6,) 

(5.6b) 

where the real phases 0, ( j  = 1 , 2 , 3 )  satisfy 

0,-0,-0, = 0. 

From (5.5) we see that the permitted values of the parameters (t3-t3) and ( e 3 - t 3 )  
are not within the range for which the equilibrium solutions exist. Further, we find 
that the solutions ( 5 . 6 ~ ) ~  (5.6 b) exhibit an oscillatory behaviour as depicted in figure 
3. 

As has been kindly pointed out to us by one of the referees, there exist another 
exact solution of the system (5.4), as discussed in Craik (1985). This occurs when all 
three waves have the same linear growth or decay rates, i.e. when 

8,(t3-t3) = c1(e,-6,) = x, 
where x is some real constant. Then if we make the transformations 

B, = b,exp(-Xi), ( j=  1 ,2 ,3 ) ,  t"=x-'(exp(Xi)-i), 

we obtain the reduced system of equations 

dB - d B  dB 4 = B,B2, 2 = B,B,, 3 = BIB2. 
dt dt dt 

This system gives rise to a class of solutions of the form 

B, = Bexp (iOl), B, = Bexp (iO,), B, = Bexp (iO,), 

(5.7) 

( 5 . 8 ~ )  

(5.8b) 
K 

where B(ij = 1 
1 - t K '  
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x lo-* 
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FIGURE 3. Showing the oscillatory time iependence of the solutions (5.6a, b)  of the 
small-amplitude case for t , - t ,  = 10, and 8, = 8, = 8, = 1. 

the constant phases 0, are related by 

e, = el +o,,  
and where K is an arbitrary positive constant. Thus, these solutions are subject to a 
finite-time breakdown when t" = K - ~ ,  corresponding to singularities in b,, ( j  = 1,2,3), 
a t  .i = ~ - ' l n  (1 + x / K ) ,  provided that x > - K .  However, if x < - K ,  then the linear 
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damping is sufficiently strong to inhibit the breakdown mechanism and the waves 
merely decay as f + co. 

Another particular case for which an analytical solution can be found is that in 
which the long-wave mode has an amplitude much larger than those of the short- 
wave vortices. Also, for simplicity, we consider the two short-wave amplitudes to be 
identical, which forces the amplitude of the long-wave mode to be purely real. 

Suppose that the short-wave amplitudes A and B are scaled on a small parameter 
6,6 4 1 then (A,  B)  = 6(A,B) whilst C remains O( l), and write d = B = aei@ where a 
and q5 are real. Substituting into (5.1) produces 

da 
d7 
_ -  - C1(T3 - F3) a +a", ac, 

having neglected terms O(8).  
Solving this gives 

C =K1exp((e3-Z3)7), (5.96) 

where Kl and K2 are constants. 
- G, E, - C, < 0 the amplitudes decay to the stable equilibrium point 

a = C = 0. However, if 3 - 5!, > 0, e3 - 2, < 0 then we have the case where the long- 
wave mode decays exponentially but the short-wave modes grow likewise. Therefore 
at some point in time the initial assumption regarding the relative amplitude sizes 
becomes invalid. In particular if @ < @c then the amplitudes adjust until we reach 
a stable equilibrium solution of the form ( 5 . 2 ~ )  or (5 .2d ) .  

Another avenue for analysis of the system (5.1) is to investigate the possibilities of 
either finite-time or infinite-time singularities in solutions. Such breakdowns have 
been found in a variety of interaction phenomena, and Hall & Smith (1988) have 
discovered that both types of singularity are possible in the context of interaction 
between vortices and Tollmien-Schlichting waves. However, apart from the 
specialized case in which the three modes all have the same linear growth or decay 
rates and for which the solution is given by (5.8), we found the singularities in the 
solutions of (5.1) tend to be of a logarithmic nature, do not occur as time advances 
and so are of no practical significance. 

To conclude, we remark that we have formulated the problem in which three 
vortices can coexist in concentric cylinder flows for a suitable choice of parameters 
and interact to form a resonant triad in which two of the modes are nonlinear. 
Coupled evolution equations for the modes have been derived and some simple 
analysis of equilibrium solutions has been conducted. Some possible future lines of 
investigation have been suggested, although it is likely that a full description of the 
variety of behaviours which may be exhibited by the solutions of the triad equations 
would be most easily gleaned by conducting a full numerical simulation of the 
problem. The system (5.1) could be approximated using an appropriate finite- 
difference estimate for the time derivative. The system would then be marched 
forward in time from a selection of inifial conditions and the evolution of the 

Clearly, if 
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amplitudes monitored. However, the system (5.1) is of a sufficiently complicated 
structure that complete description of its properties remains a huge unresolved topic 
with much work to be done before overall satisfactory conclusions become feasible. 
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